Skip to content

Injection molding and thermoforming are two of the most common techniques used to create cost-effective plastic components.

Injection molding uses high pressure to force molten thermoplastics into detailed cavity molds. Since each cycle can fill many molds, injection molding is extremely efficient, and its results are both precise and repeatable. Thermoforming also uses heat and pressure to mold plastic. However, it begins with a solid sheet of thermoplastic, which conforms to a molded tool when pressure is applied. While it has a low start-up cost, thermoforming lacks some of the benefits of injection molding. 

This article explores the advantages of each process to help you make the optimal choice for your next thermoplastics project.

Thermoforming vs. Injection Molding Cost

The cost differences between thermoforming and injection molding are largely due to differences in tooling costs. The molds used for thermoforming tend to be less complex, and because the process uses lower pressure levels, they can be made from more affordable materials. Together, these factors mean that thermoforming tend to require a lower initial investment than injection molding. 

At the same time, while injection molding requires more money up-front, the tooling is extremely durable and can be reused across multiple high-volume runs. The same is not true of thermoforming molds, which will need to be remade after a certain amount of wear. This means that injection molding is often more affordable in the long term, especially for clients with high-volume requirements.

Thermoforming vs. Injection Molding Lead Times

Differences in tooling similarly affect the lead time for thermoforming and injection molding. Due to their higher complexity, injection molds typically take longer to create than thermoforming dies. It is not uncommon for injection molds to require a prolonged design and prototyping phase before production begins. 

The first time you order injection-molded components, the lead time will likely be longer than if you had chosen thermoforming. However, injection molding is also known for its high-efficiency thanks to multi-cavity molds and the potential for automation. This means that, after the first run, lead times become much more favorable for injection molding.

How to Choose Between Thermoforming & Injection Molding

When considering injection molding vs. thermoforming, it is important to consider how the methods' advantages relate to your project parameters. 


Thermoforming's key advantages include:

In general, thermoforming is preferable to injection molding for large parts, or for simple designs at low production volumes. If the product has complex features, or if you need more than 3,000 pieces, injection molding is likely the better option. Still, thermoforming is a fast and cost-effective choice for many components, including:

Injection Molding

There is some overlap in the range of projects that can be accomplished with thermoforming and injection molding. However, the chief advantages of injection molding benefit a different set of products. These strengths include:

Based on these advantages, injection molding is best used for small or complex parts, or those requiring tight tolerances. It is also the better option for large or recurring orders. Typical applications include:

Injection Molding Services from Advanced Prototype Molding

Injection molding and thermoforming are both effective, versatile techniques with many advantages. There is no single best choice that suits all projects. Instead, you should consider project parameters and constraints to identify the best option. 

If your project involves small elements, complicated features, or high volumes, injection molding may be the right fit for you. As an ISO 9001:2015-certified manufacturer, Advanced Prototype offers reliable injection molding services, including options for urethane castings and RTV molds. To learn more, contact us or request a quote today.

Manufacturers use molding processes to create high-volume orders of precision components, prototypes, and everything in between. There are multiple different types of molding processes available, with blow molding and injection molding being popular options. Both can create high-quality parts that meet tight tolerances and budget requirements. However, there are key differences between the two processes that are important to understand before selecting the right fit for your next production order.

Blow Molding vs. Injection Molding

Ultimately, blow molding and injection molding are used to create different types of products. In injection molding, fluid plastic or rubber material is injected into a mold at high speeds and temperatures, filling the mold without gaps or air bubbles. It produces solid components that have the precise dimensions established by the mold. Injection molding manufacturers can also create hollow goods by creating two molded halves that are sealed together.

Blow molding processes, on the other hand, are used to create hollow products, like bottles, by following the same basic process as glassblowing. First, manufacturers heat a plastic tube and expand it with air until it resembles a balloon. Then manufacturers clamp a mold in place over the balloon, or parson, to form the fluid plastic into a specific shape. This results in a seamless construction. However, some common defects or vulnerabilities in blow-molded containers include:

While both processes are cost-effective and reliable, the type of product you want to produce is the main deciding factor in which process you should select. 

Advantages of Injection Molding

Injection molding is a versatile option for producing components and products of virtually any shape, profile, or application. Some of the key advantages of injection molding include:

Advantages of Blow Molding

Blow molding processes also offer distinct advantages for orders that require the production of hollow goods, including:


Both blow molding and injection molding can quickly and efficiently produce plastic goods. But injection molding is commonly used to create solid plastic parts and products with a filled interior, and blow molding creates seamless, hollow parts, such as bottles and hollow toys. Because the two processes produce different types of plastic goods, the applications for each method differ.

Blow Molding Applications

The most common applications for blow molding include bottles and other types of packaging. These products account for about 49% of blow molding processes around the world, especially for industries that require one-piece bottles at high volumes and with fast turnaround times. Some of the specific applications of blow molding include:

Injection Molding Applications

Injection molding processes create solid components, which gives it a far more versatile range of applications. It can be used to mass-produce hundreds of thousands or even millions of identical products. Some of the most common applications of injection molding include:

Injection Molding Services From Advanced Prototype Molding

Both injection molding and blow molding processes are popularly used throughout multiple different industries. At Advanced Prototype Molding, we're a leading provider of high-quality plastic molding, mold fabrication, plastic finishing services, and more. Contact us today to learn more about our capabilities or request a quote for pricing details.

In the world of manufacturing, prototypes are commonly used in both the design and development of physical objects, particularly when large system building construction or manufacturing is involved. Advanced Prototype Molding has over 40 years of experience in building reliable, high-quality prototypes. Here, we will discuss the importance of product prototyping as well as its processes, materials, and benefits. 

What is Product Prototyping?

Prototyping is a process in which a sample product is created that can then be tested in a “real world” environment similar to the one the final product will be used in. It gives you a chance to test quality and identify issues in a relatively low-stakes environment before mass production begins. A prototype serves as a "throwaway" model that is made to understand the requirements of a project prior to the design and coding phases.

Rapid prototyping is an accelerated version of prototyping that employs both 3D CAD software and 3D printing technology. With a rapid prototype, customized products no longer need to be created from scratch - thus improving product development significantly.

For projects that require revision and end-user feedback, prototyping is a must. It's far easier and less expensive to implement significant changes on a prototype than it is once a product has entered full-scale production. By creating a prototype, you can actually physically interact with a proposed product and see which elements of it are working and, more importantly, which ones need refining.

Prototype Manufacturing Processes & Materials

There are various prototype manufacturing processes to choose from depending on your needs. These include:

At Advanced Prototype Molding, we offer these product prototyping methods with a wide range of material options, including:





Advanced Prototype Molding can help you select the best prototyping method and materials for your specific application.

Benefits of Prototype Manufacturing

Prototype manufacturing brings with it a wide range of benefits. One of its main advantages is its ability to reduce time and costs. Prototyping allows you to address small problems now before they have a chance to become much bigger ones later on in the manufacturing process, thus increasing the speed at which you're able to get your products to market.

Not only that, but the prototyping process allows you to better test product features, manufacturing methods, user experiences, and more before you enter full-scale production. Product prototyping also leads to better visualization of the final product as well as improved and increased user involvement.

Product Prototyping Services at Advanced Prototype Molding

Product prototyping offers a host of advantages that make it an extremely important manufacturing process for various industries. By being able to test and visualize the product, you can make the necessary adjustments and improvements before final production, saving both time and money. 

At Advanced Prototype Molding, we offer a broad selection of rapid prototyping and 3D printing services for various industries, including:

If you'd like to find out more information about the benefits of product prototyping, or for more information about our services, please contact Advanced Prototype Molding today. You can also fill out a request for quote to get started on your next rapid prototyping project.

Injection molding and 3D printing have many similarities since both processes take an abstract design and turn it into a 3D object. However, while they often seek to accomplish the same or similar goals, they also have distinct characteristics that make them appropriate for different prototyping and production projects. For example, 3D printing is an additive process that is suitable for low-volume runs, while injection molding is a shaping process that is better suited for high-volume runs. Understanding the differences between the two is key to choosing the best method for your needs.

Overview of 3D Printing

3D printing utilizes a specialized printer and filament material to create the desired object from a digital design file. The printer builds the object by adding successive layers of filament as per the specifications outlined in the file.

Overview of Injection Molding

Injection molding utilizes pre-made molds to shape material into the desired object. The process involves heating the material to a molten state and then injecting it at high pressures into the mold. After a cooling period, the material is able to maintain the shape of the mold, at which point it is removed and sent for further processing if needed.

When to Use 3D Printing vs. Injection Molding

How to Choose Between 3D Printing & Injection Molding


Click to Enlarge

While both injection molding and 3D printing can be used for prototyping and production operations, their suitability for a particular project depends on the part and production specifications.

When Should I Use 3D Printing?

As an additive manufacturing process, 3D printing does not require the use of a mold. Eliminating this tooling requirement benefits manufacturers in many ways. For example:

Given the above, 3D printing is commonly used during the prototyping phase for new parts and products.

One thing to keep in mind regarding 3D printing is that the maximum size of the printed component is limited by the capacity of the print bed. As a result, 3D printed parts and products are generally to under 30”.

When Should I Use Injection Molding?

As injection molding operations require the use of molds, they generally have longer turnaround times than 3D printing operations since manufacturers need to wait for the mold to be created and delivered. This tooling requirement increases the overall cost of injection molding operations and makes it harder to accommodate design changes. That’s why manufacturers generally use the process for projects involving high production quantities since it lowers per-unit tooling costs.

One thing to keep in mind regarding injection molding is that it can accommodate designs of nearly any size or complexity. Additionally, the molds can be constructed to create multiple units of the same component or different components simultaneously. This capability helps reduce the overall manufacturing time for an order.

Learn More About 3D Printing & Injection Molding From APM

Need assistance choosing between 3D printing and injection molding for your next project? Ask the experts at Advanced Prototype Molding! Equipped with over 40 years of experiencing building prototypes and turning them into fully-fledged components, our team has the knowledge and skills to help you determine the right production method for your unique application. Additionally, whether you settle on 3D printing or injection molding, we’re ready to bring your idea to life.

To learn more about our 3D printing and injection molding capabilities, check out our 3D printing and injection molding services pages or contact us today. To discuss your project specifications with one of our team members, request a quote.

Whether you want to take an idea from concept to prototype or move a design into full production, injection molding is a suitable manufacturing solution. Below, we provide an overview of injection molding, outlining what it is, how the process works, and what to consider when planning an injection molding project.    

What Is Injection Molding?

Injection molding is a manufacturing process that involves the injection of molten materials into preformed molds. It is used to create parts and products in a wide range of shapes and sizes in low and high volumes.

There are many injection molding variations, each of which requires the heating and melting of material, injection of the molten material into a mold, and cooling of the material within the mold to form the desired component. Three of the main methods utilized differ based on the material used:

How Does the Injection Molding Process Work?

Injection Molding ProjectWhile the injection molding process may vary from project to project, depending on the part and production specifications, it typically consists of the following steps:

The Mold is Designed & Created

While there are standard molds available for injection molding operations, many projects require custom molds. These customized components must be designed and built to suit the desired product. Once the molds have been sourced or created, the injection molding process can begin.

The Mold is Installed in the Injection Molding Machine

How Does the Injection Molding Process Work


Click to Enlarge

The mold must be properly positioned and affixed within the injection molding machine to ensure high product and process quality.

The Material is Fed into a Heated Barrel

The injection molding material form depends on the material. For example, plastic typically comes in pellet form. Regardless of type or form, the material is heated until it reaches its liquid state.

The Molten Material is Injected into the Mold

Once the material is fully melted, it is injected into the mold, which is securely closed to ensure the material does not leak out.

The Material is Cooled Until it Resolidifies

The molten material cools as soon as it comes into contact with the mold. It is allowed to continue to cool until it has solidified, which enables it to maintain the shape of the mold even after it has been ejected.

The Molded Component is Ejected From the Mold

Once the material has fully cooled, the component is ejected. Afterward, it can be packaged for shipment or further processed as needed.

What Should I Consider When Planning an Injection Molding Project?

SLA and Injection Molding

There are many factors to consider when planning an injection molding project. Some of the questions you should answer before beginning the project include:

If you’re outsourcing your prototyping and/or production operations, the injection molding company you partner with should be able to meet all of your requirements and restrictions.

Injection Molding Services at Advanced Prototype Molding

Looking for an injection molding company that is as committed to your project success as you are? Advanced Prototype Molding is the ideal partner!

At Advanced Prototype Molding, we are a full-service injection molding company. We provide design, mold engineering, injection molding, assembly, finishing, and many other related services all under one roof, which enables us to turn our customers’ concepts into reality while saving them time and money.

To learn more about our injection molding capabilities, check out our injection molding services page or contact us today. To partner with us on your next injection molding project, request a quote.

Certified Logo with ACG

1520 N Old Rand Road Wauconda, IL 60084
Tel: 847-202-4200
Fax: 847-202-4270

Certified Logo with ACG

1520 N Old Rand Road Wauconda, IL 60084
Tel: 847-202-4200
Fax: 847-202-4270

© 2020 Advanced Prototype Molding, All Rights Reserved | Site created by: Thomas Marketing Services
Top linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram